eRHIC accelerator design and plans

V.Ptitsyn C-AD, BNL

eRHIC

Zeroth-Order Design Report

BNL: L. Ahrens, D. Anderson, M. Bai, J. Beebe-Wang, I. Ben-Zvi, M. Blaskiewicz, J.M. Brennan, R. Calaga, X. Chang, E.D. Courant, A. Deshpande, A. Fedotov, W. Fischer, H. Hahn, J. Kewisch, V. Litvinenko, W.W. MacKay, C. Montag, S. Ozaki, B. Parker, S. Peggs, T. Roser, A. Ruggiero, B. Surrow, S. Tepikian, D. Trbojevic, V. Yakimenko, S.Y. Zhang

MIT-Bates: W. Franklin, W. Graves, R. Milner, C. Tschalaer, J. van der Laan, D. Wang, F. Wang, A. Zolfaghari and T. Zwart

BINP: A.V. Otboev, Yu.M. Shatunov

DESY: D.P. Barber

Editors: M. Farkhondeh (MIT-Bates) and V. Ptitsvn (BNL)

- Detailed document (265 pages) reporting studies on the accelerator and the interaction region of this future collider.
- The work performed jointly by BNL and MIT-Bates, with close collaboration with scientists from BINP (Novosibirsk) and DESY (Hamburg).
- Goals:
 - to develop an initial design for eRHIC
 - to investigate most important accelerator physics issues
 - to evaluate the luminosities that could be achieved in such a collider

The report web links:

- 1) www.agsrhichome.bnl.gov/AP/ap_notes/ap_note_142.pdf
- 2) www.agsrhichome.bnl.gov/eRHIC/eRHIC_ZDR.htm

The present efforts are towards conceptual design development.

eRHIC Scope

Center mass energy range: 30-100 Gev

How eRHIC can be realized?

Two main design options:

Linac-ring:
 RHIC

Ring-ring design option

The e-ring design development led by MIT-Bates. Technology similar to used at B-factories. Presently main design option.

- The electron ring of 1/3 of the RHIC ion ring circumference
- Full energy injection using polarized electron source and 10 GeV energy linac.
- e-ion collisions in one interaction point.
 (Parallel mode : Ion-ion collisions in IP6 and IP8 at the same time are possible.)
- Longitudinal polarization produced by local spin rotators in interaction regions.
- ZDR design luminosities (for high energy setup):
 - e-p: 4.4 10³² cm⁻²s⁻¹
 - e-Au: 4.4 10³⁰ cm⁻²s⁻¹
 - e-He³: 3.1 10³² cm⁻²s⁻¹

Electron polarization

D.Barber

- First results for high order calculation of electron polarization indicate wide enough energy range without strong depolarization resonances.
- Open issues:
 - Compensation of depolarization from detector solenoid
 - Possible depolarization from beam-beam effects

Linac-ring design

Design being developed at BNL (ZDR: V.Litvinenko et al.)

- Electron beam is transported to collision point(s) directly from superconducting energy recovery linac (ERL).
- No beam-beam limitation for electron beam (the beam is used once!).
- No prohibited energy areas for the polarization.
- No spin rotators needed.
- e-p luminosity >10³³ cm⁻²s⁻¹ possible
- But no straightforward way to get polarized positrons

Energy-Recovery Linac

Multipass energy recovery linacs

Total beam power: up to 5MW

Superconducting technology is used for linac RF cavitites

Polarization transparency (from the source to the IP) is realized by synchronous small (<40MeV) adjustment of energy gains ($\Delta\gamma_1$, $\Delta\gamma_2$) in small and large linacs.

Superconducting RF Cavity

703.75 MHz 5-cell cavity designed in BNL for e-cooling and eRHIC

State-of-the-art cavity engineering design to minimize and damp High Order modes of electromagnetic field.

Interaction region design

C.Montag, B.Parker, S.Tepikian, T.Zwart, D.Wang

- Design incorporates both warm and cold magnets.
- Provides fast beam separation. No parasitic collisions.
- Yellow ion ring makes 3m vertical excursion.
- Accommodates spin rotators and electron polarimeter.
- Put a limit on horizontal β^* for protons, because of aperture limitation in septum magnet, thus affecting achievable luminosity.
- Background produced by synchrotron radiation hitting septum magnet should not be problem (with HERA-like absrober used)

IR design schemes

_									
		Distance nearest ma from IF	gnet	Beam separatio	on	Magnet	s used	Hor/Ver be size rati	
	Ring-ring, I*=1m	1m		Combined to quadrupo		Warm a	nd cold	0.5	
	Ring-ring, I*=3m	31		0.2 - 0.15 - 0.1 -				- - -	
	Linac-ring	51	B_z [T]	0.05			·		
•	I*=3m is prefera acceptance. But Detector integrat	at the cos		-0.1 - 0.150.22 -1.5	-1 -(0.5 0 (0.5 1	1.5 2	

s [m]

Luminosity for different options

Linac-Ring:

$$L = \gamma_i f_c N_i \frac{\xi_i Z_i}{\beta_i^* r_i}$$

No electron beam-beam limit on ion current.

Luminosity is defined by ion beam parameters.

IR design allows for round beams at the collision point.

Ring-ring:

$$L = f_c \frac{\pi \gamma_i \gamma_e}{r_i r_e} \xi_{xi} \xi_{ye} \sigma'_{xi} \sigma'_{ye} k_e \frac{(1+K)^2}{K}$$

Limitation from IR design (septum magnet aperture) leads to elliptical beam (vertical to horizontal beam size ratio: K=1/2 and emittance ratio $k_e \sim 0.18$) and the limit on σ'_{vi}

Electron beam-beam limit (ξ_e < 0.08) prevents proton intensity more than 1e11 p/bunch

Luminosity versus proton beam-beam parameter

Calculations for 360 bunch mode and 250 Gev(p) x 10 Gev(e) setup; 1e11 p/bunch

Markers show locations on the luminosity lines where electron current reaches 0.5A, which is presently nominal design current for both options.

In parallel mode (1 e-p + 2 p-p collision points): $\xi_p \sim 0.0065$ ($\epsilon_p = 15\pi$ mm*mrad); In dedicated mode (only e-p collision): maximum $\xi_p \sim 0.016$ -0.018;

Electron Polarized Source

Photoemission from strained GaAs cathode

High polarization ->Low QE

- Present polarized CW sources:
 - Mainz: <100 μA
 - JLab(CEBAF):
 - 100 μA in routine operation
 - 200 μA (occasionally)
 - 1-2 mA (clear idea, plans for tests)
- eRHIC linac-ring requires several hundred mAs to go above 1.e33 luminosity

Major R&D is needed for the polarized electron source.

Electron Polarized Source -> development path

M.Farkhondeh, V.Litvinenko

Increase laser spots on the cathode, maintaining moderate extracted charge density per unit area.

Should provide sufficient target lifetime(~1 week).

Plenty of issues to overcome. Major of them: heat load and surface charge limit.

eRHIC polarized source R&D program in MIT-Bates will explore those issues.

Free Electron Laser to provide sufficient laser power (unless common laser will develop to

the required power level of ~1kW)

Luminosity with cooling

Calculations for 360 bunch mode and 250 Gev(p) x 10 Gev(e) setup; 1e11 p/bunch

Markers show electron current and (for linac-ring) normalized proton emittance. In dedicated mode (only e-p collision): maximum $\xi_p \sim 0.016$ -0.018;

Transverse cooling can be used to improve luminosity or to ease requirements on electron source current in linac-ring option. BUT, only in dedicated mode! For proton beam only cooling at the injection energy is possible at reasonable time (~1h)

e-p luminosity for 112 bunches and 15pi proton emittance 10Gev-250Gev mode

	Ksi_p	Ne per bunch, 1e11	Total electron current, A	Luminosity, 1e33
Linac-ring	0.0049	1	0.150	0.41
	0.012	2.46	0.37	1.01
Ring-ring	0.0065	1	0.150	0.07
I*=3m design	0.013	2	0.300	0.14

Luminosity dependence on CME without cooling

- Linac-ring optimal curve: 10-250 -> 5-250-> 5-50

 This optimal curve requires electron beta* readjustment: $\beta^*(10-250) = 1\text{m}; \quad \beta^*(5-250) = 0.5\text{m}; \quad \beta^*(5-50) = 2.5\text{m}$
- Ring-ring luminosity decreases as CME⁻⁴.

Luminosity dependence on CME with cooling

- For ring-ring the cooling improves luminosities for low energy proton modes.
 In this case optimal curve is: 10-250-> 10-50 -> 5-50
- For linac-ring operation in proton beam-beam limit the cooling does not provide the luminosity increase, but can be used to unload (proportionally) required electron current. Optimal curve is: 10-250-> 5-250 -> 5-50

Modular dipole

	All bends on	Center bend on only
ρ (m)	70.3m	23.4
B(KG) 5GeV	2.37	7.12
P (MW)	~0.35	~1.06
τ _x (msec)	~54.5	~18.1

F.Wang

To increase beam-beam limit for 5Gev electrons the additional radiation damping should be created: special lattice with higher bending field at 5Gev

Alternative solution to enhance damping at 5Gev: dedicated damping wigglers

Major R&D issues

• Ring-ring:

• The accommodation of synchrotron radiation power load on vacuum chamber. (To go beyond 5.e32 cm⁻²s⁻¹ luminosity).

• Linac-ring:

- High current polarized electron source
- Energy recovery technology for high energy and high current beams

• Ion ring:

- Beam cooling techniques development (electron, stochastic).
- Increasing total current (ions per bunch and number of bunches).

 Going beyond 180 bunches will require cardinal injection system upgrade.
- Polarized He³ production (EBIS) and acceleration

Last notes

- Two design options for eRHIC are under development: ring-ring and linac-ring.
 - Zero-degree design has been produced (ZDR, 2004).
 - Present development is towards more detailed conceptual design report.
- Ring-ring design is at present level of accelerator technology, but e-p luminosity of 1.e33 cm⁻²s⁻¹ is very difficult to achieve.
- At similar level of electron beam intensities the linac-ring design provides higher luminosity, but requires significant development for polarized electron source.
- Dedicated mode allows to exploit advantages of linac-ring option by using cooling and higher proton bunch intensity.

